The Maslov and Morse Indices for System Schrödinger Operators on R

نویسندگان

  • P. HOWARD
  • A. SUKHTAYEV
چکیده

Assuming a symmetric matrix-valued potential that approaches constant endstates with a sufficient asymptotic rate, we relate the Maslov and Morse indices for Schrödinger operators on R. In particular, we show that with our choice of convention, the Morse index is precisely the negative of the Maslov index. Our analysis is motivated, in part, by applications to stability of nonlinear waves, for which the Morse index of an associated linear operator typically determines stability. In a series of three examples, we illustrate the role of our result in such applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Decompositions and Indices of Schrödinger Operators

The Maslov index is used to compute the spectra of different boundary value problems for Schrödinger operators on compact manifolds. The main result is a spectral decomposition formula for a manifold M divided into components Ω1 and Ω2 by a separating hypersurface Σ. A homotopy argument relates the spectrum of a second-order elliptic operator on M to its Dirichlet and Neumann spectra on Ω1 and ...

متن کامل

The Morse and Maslov indices for matrix Hill’s equations

For Hill’s equations with matrix valued periodic potential, we discuss relations between the Morse index, counting the number of unstable eigenvalues, and the Maslov index, counting the number of signed intersections of a path in the space of Lagrangian planes with a fixed plane. We adapt to the one dimensional periodic setting the strategy of a recent paper by J. Deng and C. Jones relating the...

متن کامل

A Morse Index Theorem for Elliptic Operators on Bounded Domains

We consider a second-order, selfadjoint elliptic operator L on a smooth one-parameter family of domains {Ωt}t∈[a,b] with no assumptions on the geometry of the Ωt’s. It is shown that the Morse index of L can be equated with the Maslov index of an appropriately defined path in a symplectic Hilbert space constructed on the boundary of Ωb. Our result is valid for a wide variety of boundary conditio...

متن کامل

The Spectral Asymptotics of the Two-Dimensional Schrödinger Operator with a Strong Magnetic Field. I

Abstract. We consider the spectral problem for the two-dimensional Schrödinger operator of a charged particle in strong uniform magnetic and periodic electric fields. The related classical problem is first analyzed by the Krylov–Bogolyubov–Alfven and Neishtadt averaging methods. This allows us to prove the almost integrability of the original two-dimensional classical Hamiltonian system and red...

متن کامل

Invariant measures of Hamiltonian systems with prescribed asymptotic Maslov index

We study the properties of the asymptotic Maslov index of invariant measures for timeperiodic Hamiltonian systems on the cotangent bundle of a compact manifold M . We show that if M has finite fundamental group and the Hamiltonian satisfies some general growth assumptions on the momenta, the asymptotic Maslov indices of periodic orbits are dense in the half line [0,+∞). Furthermore, if the Hami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017